
1P2P with TomP2P nodejs2.csg.uzh.ch:8080

Lecture 6

P2P with TomP2P

Advanced Topics

*Original slides for this lecture provided by David Hausheer (TU Darmstadt, Germany), Thomas Bocek, Burkhard Stiller (University

of Zürich, Department of Informatics, Communication Systems Group CSG, Switzerland, Jonas Wagner, Sebastian Golaszewski

(Student UZH)

2P2P with TomP2P nodejs2.csg.uzh.ch:8080

P2P in the news

 4.4.2016 – Alpha testing of SmartCRS

 Student Project (Till Salinger)

 WebRTC based classroom response system

 26.3.2016 - Java Opus and H264 Wrapper

 Tested on OSX, Linux, Win?

 Audio: Opus 1.1.2 (native, JNA), Video H264 (pure Java), Webcam

grabber (native, OpenIMAJ , BridJ)

 Run AudioVideoExample.java

 4.4.2016 - OpenBazaar Team Releases First Version of

Decentralized Marketplace

 Decentralized marketplace using Bitcoin

 …Fully peer-to-peer marketplace where buyers and sellers engage in

trade directly with each other…

 Direct payment / moderated (escrow) payment

http://nodejs2.csg.uzh.ch/
https://github.com/tbocek/opus-h264-webcam-wrapper
https://blog.openbazaar.org/openbazaar-is-open-for-business/

3P2P with TomP2P nodejs2.csg.uzh.ch:8080

P2P in the news

 30.3.2016 - The Trouble with Tor

…Based on data across the CloudFlare network, 94% of requests that

we see across the Tor network are per se malicious…

…A large percentage of the comment spam, vulnerability scanning,

ad click fraud, content scraping, and login scanning comes via the Tor

network…

 31.3.2016 - The Trouble with CloudFlare

 ... CloudFlare has not described the nature of the IP reputation

systems they use in any detail…

 Akamai report:…Tor IP addresses clicking on ads and performing

commercial activity was "virtually equal“ to that of non-Tor IP

addresses).…

https://blog.cloudflare.com/the-trouble-with-tor/
https://blog.torproject.org/blog/trouble-cloudflare

4P2P with TomP2P nodejs2.csg.uzh.ch:8080

0. Lecture Overview

1. Advanced Topics in TomP2P

1. Mechanisms based on Hashing in DHTs

1. And/Or Searches

2. Similarity Searches

3. Range Queries

2. Connectivity, Security, and Robustness

1. NAT (UPNP/NAT-PMP/Hole punching)

2. Security

3. Replication

4. Direct data connection / persistent connection

3. Consistency

1. Paxos

2. vDHT

4. Rsync

5P2P with TomP2P nodejs2.csg.uzh.ch:8080

1. Mechanisms based on Hashing in DHTs

And / or searching

Similarity Search

Range queries

6P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Search in DHT

 DHT.get(h(„Communication Systems Group“))

 In order to find it: DHT.put(h(„Communication Systems

Group“), value)

 Keywords

 DHT.get(h(„Communication“))

 Find it: DHT.put(h(„Communication“), value),

DHT.put(h(„Systems“), value), DHT.put(h(„Group“),

value)

 value points to h(„Communication Systems Group“)

 Keywords drawbacks

 Find good keywords → “the”, “a” are not good keywords

 Exact matches only

7P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Find “Communication” - OR Systems

 DHT.get(h(„Communication“)) and

DHT.get(h(„Systems“)), combine results

 Find “Communication” - AND Systems

 1. DHT.get(h(„Communication“)) and

DHT.get(h(„Systems“)), intersect results

 Overhead – use Bloom Filters (sequential vs. parallel)

 2. DHT.get(h(„Communication“) xor h(„Systems“))

 In order to find it: DHT.put(h(„Communication“) xor

h(„System“), value), DHT.put(h(„Communication“) xor

h(„Group“), value), DHT.put(h(„Group“) xor h(„System“),

value)

 Combination needs to be known in advance

8P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Demo

 Keywords

 Performance issue → consistent hashing (aggregation)

 Performance issue: Aggregation not done in TomP2P

 Routing aggregation?

9P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Range Queries

 Problem: random insert vs. sequence insert

Max. nr of items (n), nr of items per peer (m)

 Sequence → [0..n] [n..2n] [2n..3n] […] → peer responsible for range,

hash it, store it, done.

 But random: worst case: 1 peers has 1 data item, range query for range

[0..x] contacts x/n peers.

 Over-DHT

 PHT: trie (prefix tree); DST: segment → tree on top of DHT

Main idea: hash of tree-node (resp. for range) → DHT

 PHT: Peer stores n data items, if n reached, splits data (moves data

across peers)

 DST: stores data on each level (redundancy) up to a threshold

 No data splitting

10P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Example:

 Set n = 2, m=8

 1, “test”; 2, “hallo”; 3, “world”; 5, “sys”

 Tree: store value

 Translate putDST(1, “test”) to

 put(hash([1-8]),”test”)

→ may be stored (only if

threshold not reached)

 put(hash([1-4]),”test”) → may be stored

 put(hash([1-2]),”test”) → will be stored

 Store put(3, “world”), put(2, “hallo”) and put(5, “sys”)

11P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Query getDST(1..5) translates to

 get(hash[5-6]) → returns “sys”

 get(hash[1-4]) → returns “test”, “world” and tells us that

threshold has been reached

 get(hash[1-2]) → returns “hallo”, “test”

 get(hash[3-4]) → returns “world”

 Range query as series of put() and get()

 Demo

 Storage modification

12P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Similarity Search in DHT

 http://fastss.csg.uzh.ch

 Project that brings similarity search to HT / DHT

 Problem: Search for “netwrk” fails for DHTs

 Similarity: Edit distance / Levenshtein distance

Min operations to transform one string into another, operations: insert,

delete, replace

 Calculated in matrix size O(m x n)

http://fastss.csg.uzh.ch/

13P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Example d(test,east) = 2 (remove a, insert t)

 Expensive operation if all words need testing

 Main idea: pre-calculate errors

 All possible errors? Neighbors for test with ed 2: test, testa, testaa,

testab, ... , tea, teb, tec, ..., teaa, teab, ... → 23883 more of those!

T E S T

0 1 2 3 4

E 1 1 1 2 3

A 2 2 2 2 3

S 3 3 3 2 3

T 4 3 4 3 2

14P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 FastSS pre-calculates with deletions only

 Neighbors for test with ed 2: test, est, st, et, es, tst, tt, ts, tet, te, tes

 Pre-calculation on query and index

 11 neighbors → 11 more queries, indexed enlarged by 11 entries

 Example d(test,fest)=1 (query) (index)

15P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Example d(test,east)=2 (query) (index)

 P2PFastSS implemented on top of TomP2P (early

version) – tests with indexing Wikipedia abstracts

16P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Index documents using

put(hash(document),

document)

 Document (0x321) contains word

test

 Index all neighbors (test, tes,

tst, tet, est) using

put(hash(neighbor),

point to document)

 hash(“tes”) = 0x123

17P2P with TomP2P nodejs2.csg.uzh.ch:8080

 User searches for “tesx”

 Neighbors are generated

(tesx, esx, tsx, tex, tes)

 get(hash(neighbor)) → 0x123

 Find pointer to document

(0x321)

 document = get(0x321)

 Tests with edit distance 1,

partially 2, ignoring delete pos.

 Overhead (n choose k) for query and index

 Similarity search as series of put() and get()

 Demo

Mechanisms based on Hashing in DHTs

18P2P with TomP2P nodejs2.csg.uzh.ch:8080

Mechanisms based on Hashing in DHTs

 Direct data and persistent connections (data download)

 All connections in TomP2P are RPC and very short-lived

 Open connection – request – reply – close connection

 Direct sendDirect(PeerAddress, …) / with routing send(key,…)

 Always use setObjectDataReply() or setRawDataReply()

 Object serializes object to byte[] (easy)

 Raw exposes (Netty) buffer to the user for your own protocol (more work)

 Persistent connections set by the user

 Only for direct send sendDirect(PeerAddress, …)

 Demo with persistent connections

(net.tomp2p.examples.ExamplePersistentConnection)

19P2P with TomP2P nodejs2.csg.uzh.ch:8080

2. Connectivity, Security, and Robustness

NAT (UPNP/NAT-PMP/Hole punching)

Security

Replication

20P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 NAT

 Network Address Translation – breaks end-to-end

 “If nothing else, [NAT] can serve to provide temporarily relief while

other, more complex and far-reaching solutions are worked out”

(RFC 1631 - The IP Network Address Translator (NAT))

 Easy solution:

Manual port forwarding: e.g., setup on your router

21P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Easy solution: UPNP / NAT-PMP

 Both configure port forwarding, but UPNP is more: discover devices -

uses broadcasting to find router (Simple Service Discovery Protocol)

 UPNP: configure devices - uses HTTP and XML to configure port

forwarding (Internet Gateway Device Protocol)

 NAT-PMP: protocol made for configuring port-forwarding, but no

discover (how to find router?)

22P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 NAT example in TomP2P

 TomP2P supports NAT-PMP and UPNP, holepunching, and relaying

 Before bootstrap: peer.discover(PeerAddress);

 How it works: (1) send request how others peers sees our IP

 If other peers sees the same IP as we see, we are fine

 If not, we are most likely behind a NAT

 (2) do UPNP, if it fails, do NAT-PMP, if it fails, mark it as firewalled,

setup relays / rendez-vous

 (3) If it works test connection, send request to other peer to contact us

using the port we just set up.

 (4) If we get contacted by this peer within 5 sec, port-forwarding

works.

Manual setup possible using Bindings.java

23P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Difficult solution: hole punching

 rendezvous / relay peer which does “hole punching”, in worst case

relay traffic.

 NAT: translation table for private / public network

IP: 200.2.2.2

Port: 4321

IP : 10.0.0.2

Port: 1234

NAT

10.0.0.1

100.1.1.1

Private Network Public Network

NAT Table Entry: (10.0.0.2:1234, 200.2.2.2:4321; 200.2.2.2:4321, 100.1.1.1:3333)

24P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness: Hole punching

 1) Peer1 initiates a new connection trial to peer2 via relay and signals its

source ports and IP (relay/rendez-vous peer has connection to URP2)

 2) Peer2 answers back with its source ports and IP

 3) Both of the peers punch holes into their firewall/NAT

 4) Established a connection

Relay Peer

Unreachable

Peer 2

NAT

Unreachable

Peer 1

NAT

1 2

3

4

25P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Hole punching

 Unreachable peer 1 request to NAT 4.5.6.7, will fail – no mapping,

however, unreachable peer 1 creates mapping with that request

 Unreachable peer 2 sends request to unreachable peer 1 (1.2.3.4:Y)

success!
NAT

1.2.3.4

NAT

4.5.6.7

URP1

192.168.1.2

URP2

10.0.0.2

Mapping for NAT 1.2.3.4 (Unreachable peer 1)

192.168.1.2:4000 … 1.2.3.4:Y 4.5.6.7:Z

Mapping for NAT 4.5.6.7 (Unreachable peer 2)

10.0.0.2:5000 … 4.5.6.7:Z 1.2.3.4:Y

NAT

1.2.3.4

NAT

4.5.6.7

Rendezvous

8.9.0.1

URP1

192.168.1.2

URP2

10.0.0.2

26P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Hole Punching (BA Jonas Wagner)

 Currently: network namespaces (since 2.6.24)

NAT

1
NAT

2

RELAY
PEER 1

PEER 2
Router to CSG

Network

27P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 If everything fails, use relays

Well connected / reachable peer

 Forwards the data to and from the unreachable peer

 Relay candidates are close neighbors

Will be added to your PeerAddress

 Other peers will see the relay from the peer address, contact them

 Up to 5 relay peers

 Relays keep TCP connection open

 UDP messages (ping / neighbor) handled by relays itself

 Unreachable peer must update information for relays to be able to

handle request

28P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Security in TomP2P (best-effort security)

 Signature-based, no data encryption

Messages are signed using SHA1 with DSA

 Sybil attacks!

 This attack creates large number of identities, may collude

 How to prevent Data from being overwritten

 Domain and entry protection, requires cooperation

 StorageLayer.protectionDomainMode(…)

For domains and entries

protectionEnabled ALL NONE

protectionMode NO_MASTER MASTER_PUBLIC_KEY

29P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Domain protection

 Set publick key new PeerMaker(PublicKey)

 Enable=ALL, Mode=NO_MASTER → every peer can protect domains,

first come first served

 Enable=NONE, Mode=NO_MASTER → no peer can protect domains

 Enable=ALL, Mode=MASTER_PUBLIC_KEY → every peer can protect

domains, the owner can claim domain

 Enable=NONE, Mode=MASTER_PUBLIC_KEY → no peer can protect

domains except the owner

 Owner of domain 0x1234 is peer where 0x1234 == hash(public_key)

 Same concept for entries

 Tracker should have no domain protection and content protection set

to Enable=NONE, Mode=MASTER_PUBLIC_KEY → WiP

 Demo

30P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Demo 1 (net.tomp2p.examples.ExampleDomainProtection):
 3 peers, all with public keys

 Setup for domains: Enable=ALL, Mode=MASTER_PUBLIC_KEY

 (1) peer1 stores data in domain2 → success

 (2) peer3 wants to store data in domain2 → fail

 (3) peer2 wants to store data in domain2 → success

 Demo 2 (net.tomp2p.examples.ExampleDomainProtection):
 3 peers, all with public keys

 Setup for domains: Enable=NONE, Mode=MASTER_PUBLIC_KEY

 (1) peer1 stores data in domain2 → success

 (2) peer3 wants to store data in domain2 → success

 (3) peer2 wants to store data in domain2 → success

 (4) peer3 wants to store data in domain2 → fail

 TomP2P + Bitcoin Blockchain (former master project, not yet
merged)

31P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Replication

 Enough replicas

 Direct replication

 Originator peer is responsible

 Periodically refresh replicas

 Example: tracker that announces its data

• Problem

 Originator offline → replicas

disappear. Content has TTL,

e.g.

data.ttlSeconds(15)

32P2P with TomP2P nodejs2.csg.uzh.ch:8080

Connectivity, Security, and Robustness

 Indirect Replication

 The closest peer is responsible,

originator may go offline (0Root)

 Periodically checks if enough

replicas exist

 Detects if responsibility changes

• Problem

 Requires cooperation between

responsible peer and originator

 Multiple peers may think they are

responsible for different versions →

eventually solved

 Replication Demo (net.tomp2p

.examples.ExampleDirectReplication)nRoot (default is 0Root)

33P2P with TomP2P nodejs2.csg.uzh.ch:8080

3. Consistency

Paxos

vDHT

34P2P with TomP2P nodejs2.csg.uzh.ch:8080

Consistency

 DHTs have weak consistency

 Peer A put X.1, Peer B gets X.1 modifies it puts B.2

 Same time: Peer C gets X.1 modifies it puts C.2

 Which one is stored B.2 of B or C.2 of C?

 Consistency generic issue in distributed systems

 Coordinator required:

 easy solution: centralized

 Interesting solution: decentralized, in case failed peer, pick another peer

 Coordinator needs to be defined

 Election, example Paxos

https://www.youtube.com/watch?v=JEpsBg0AO6o&feature=youtu.be

35P2P with TomP2P nodejs2.csg.uzh.ch:8080

Consistency

 Paxos

 Protocol family for consensus (multi, cheap, fast, generalized, …)

 Roles: Client/Proposer (requester), Acceptor (voter), Leader

(coordinator), Learner (responder)

 Client sends requests to a proposer

 Proposer send proposal acceptor, send back promise

 If majority promises, send value to acceptor, acceptor sent to learner

 Learner sent result to client

 2 Phases

 Phase 1: prepare

/ promise

 Phase 2: accept

/ accepted

Client Proposer Acceptor Learner

| | | | | | |

X-------->| | | | | | Request

| X--------->|->|->| | | Prepare(1)

| |<---------X--X--X | | Promise(1,{Va,Vb,Vc})

| X--------->|->|->| | | Accept!(1,Vn)

| |<---------X--X--X------>|->| Accepted(1,Vn)

|<---------------------------------X--X Response

| | | | | | |

http://en.wikipedia.org/wiki/Paxos_%28computer_science%29

http://en.wikipedia.org/wiki/Paxos_(computer_science)

36P2P with TomP2P nodejs2.csg.uzh.ch:8080

Consistency

 Raft – Alternative to Paxos (easier), three roles: leader,

follower, candidate

 Paxos and DHTs [1], [2]

 Consistency in DHTs – vDHT

 CoW, versions, 2PC, replication, software transactional memory

(STM) → for consistent updates. Works for light churn

https://www.youtube.com/watch?v=YbZ3zDzDnrw
http://www.ist-selfman.org/wiki/images/0/0e/ZIBpaperOnPaxos.pdf
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-993.pdf

37P2P with TomP2P nodejs2.csg.uzh.ch:8080

Consistency

 vDHT Basics

 No locking, no timestamps (replication time may have an influence)

 Every update – new version

 1. get latest version, check if all replica peers have latest version, if not

wait and try again

 2. put prepared with data and short TTL, if status is OK on all replica

peers, go ahead, otherwise, remove the data and go to step 1.

 3. put confirmed, don’t send the data, just remove the prepared flag

 In case of heavy churn, API user needs to resolve

 Demo: net.tomp2p.examples. ExampleVDHT (new)

 Example: no consistency – traditional put strategy

 Example: vDHT - pessimistic put strategy

38P2P with TomP2P nodejs2.csg.uzh.ch:8080

4. Rsync

Introduction, Example, and Discussion

39P2P with TomP2P nodejs2.csg.uzh.ch:8080

Rsync - Introduction

 Rsync used to synchronize data over network

Minimizing data transfer (delta)

 Command line client (standard utility)

 E.g. rsync -aP --link-dest=$HOME/Backups/current /path/to/important_files

$HOME/Backups/back-$date

 Unchanged files are hard linked (--link-dest) → Can be used for

incremental backups

 Main idea

 Receiver compute two checksums (strong, weak) → sent to sender

 Sender computes with weak checksum and checks for known blocks

 Sender verifies with strong checksum → sends difference to receiver

 Example with two peers:

40P2P with TomP2P nodejs2.csg.uzh.ch:8080

Rsync - Example

 Peer B does not have the data → peer A copies it to

peer B, no need for rsync

copy

41P2P with TomP2P nodejs2.csg.uzh.ch:8080

Rsync - Example

 Peer A modifies data (insert, update)

Wants to synchronize with peer B

modify

42P2P with TomP2P nodejs2.csg.uzh.ch:8080

Rsync - Example

 Peer A modifies data (insert, update)

Wants to synchronize with peer B

Send checksums

43P2P with TomP2P nodejs2.csg.uzh.ch:8080

Rsync - Example

44P2P with TomP2P nodejs2.csg.uzh.ch:8080

Rsync - Example

 Peer A sends 2 + 8 blocks to peer B

 Peer A and peer B have same data

Send data

45P2P with TomP2P nodejs2.csg.uzh.ch:8080

Rsync - Mechanism / Discussion

 If data does not exist → copy

 Use-case: portion of data stays the same

 Replication

 Two checksums for performance (MD5 and Adler-32)

 Collisions possible, but unlikely 2-160

 Rsync in TomP2P (demo)

 If you use CoW, don’t use Rsync!

 net.tomp2p.examples.ExampleRsync (new)

